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For two different but isospectral polygonal membrane shapes (sharing the same complete
vibration spectrum) formed from seven congruent elemental isosceles triangles, some exact
shared frequencies and analytical modal function expressions which display the nodal
curves are given explicitly. Both Dirichlet (fixed) and Neumann (free) boundary conditions
are considered. Figures of the first few nodal patterns are drawn: they are quite distinctive
and not all merely restricted to regular rectilinear sub-divisions. Computed modal function
contour plots enable the overall sequential mode numbers to be assigned. The exact
frequencies and sequential mode numbers for these analytical modes could be used as
benchmarks in experimental investigations. The relevance for simply-supported polygonal
plates is also discussed.
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1. INTRODUCTION

A common problem in engineering and applied mathematics is the determination of the
frequency spectrum of a vibrating membrane with some given shape and boundary
condition. For the case of a uniform membrane, the partial differential equation to be
solved is the Helmholtz equation

(92 + k2)u=0, (1)

where 92 is the two-dimensional Laplacian (12/1x2 + 12/1y2 in rectangular Cartesian
co-ordinates) and the eigenvalue is k2 with

k=2pf/c, (2)

where f is the characteristic frequency and c is the free wave speed. The shape together
with the boundary condition determines the solution spectrum. The question arises: to
what extent does the spectrum determine the shape?

Kac in the title of reference [1] asked ‘‘Can one hear the shape of a drum?’’. By utilizing
the heat equation and its Green’s function, he showed that a spectral function

E=s
N

exp (−k2
Ns), (3)
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for a shape with smooth boundary and Dirichlet (fixed) boundary condition

u=0, (4)

has the asymptotic expansion

E0A/(4ps)−L/[8(ps)1/2]+ (1− h)/6+O(s1/2) as s:0. (5)

Here, the membrane has area A, perimeter length L and h smooth holes; s is the expansion
parameter. Subsequently, Stewartson and Waechter [2] showed that the terms in equation
(5) after the first two could all be expressed in terms of the curvature of the boundary of
the shape.

For Neumann (free) boundary condition

1u/1n=0, (6)

(where n denotes the normal to the boundary), Pleijel [3] and Sleeman [4] showed that the
second, perimeter length, term in equation (5) changes sign.

For the situation such as that to be considered in this paper, of an irregular polygon,
McKean and Singer [5] showed that the third (constant) term in equation (5) is replaced
by a corner angle term. The spectral function expansion becomes

E=A/(4ps)3L/[8(ps)1/2]+ s
i

(p2 − u2
i )/(24pui )+ · · · , (7)

where the sum is taken over all the (possibly different) internal angles ui . In equation (7),
the − sign applies to Dirichlet boundary condition (4) and the + sign to Neumann
boundary condition (6).

Thus, the spectrum does determine certain geometrical features of the domain, such as
area and perimeter, but it was an open question as to whether the spectrum uniquely
determined the shape.

Counter examples for membranes were first discovered by Gordon et al. [6, 7], in the
form of two distinct shapes made up of seven half-crosses in two different ways,
colloquially referred to as ‘‘pound’’ and ‘‘yen’’ shapes. Popular accounts have been given
by Cipra [8], Stewart [9] and Weidenmuller [10]. It is remarkable that membranes having
these two different shapes nevertheless have exactly the same complete spectrum of
characteristic frequencies. Such pairs of shapes are termed ‘‘isospectral’’. Thus, ‘‘one
cannot hear the shape of a polygonal drum’’.

Subsequently, a pair of simpler isospectral shapes, each built up in a different way from
seven ‘‘elemental’’ congruent isosceles right-angled triangles into an eight-sided polygon,
was discovered (see e.g., Chapman [11]). These shapes are depicted in Figure 1. With regard
to equation (7), they evidently possess the same area, perimeter length and internal angle
set as each other. Equation (7) has been verified analytically in reference [12] for the
elemental triangle of which these isospectral shapes are composed, by use of its explicitly
known spectrum and the Poisson summation formula.

Sridhar and Kudrolli [13] adopted an experimental approach to verification of
isospectrality, and measured some spectra of two very thin microwave cavities constructed
with these isospectral shapes. Since the governing two-dimensional Helmholtz equation for
the electromagnetic field (with Dirichlet boundary conditions) is of exactly the same form
as equation (1), this represents a very effective utilization of physical analogies. Their
results presented in reference [13] showed pairwise good agreement for the first 25 modes,
and were reported as being typical of results up to the 54th mode. The authors there drew
attention to the lack of analytical solutions and difficulties with possible numerical
solutions.
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Subsequently, Wu et al. [14] presented tabulated results of numerical computations for
the first 25 modes, using extrapolated finite difference methods and mode-matching. They
also showed some low-lying analytical mode functions. Then Driscoll [15, 16], using a
modified finite element/domain decomposition method, gave much more accurate (to 12
digits) numerical results for the first 25 modes.

Chapman [11] proved that the two isospectral domains are also isospectral for the
Neumann boundary condition. The main purpose of this paper is to exhibit further
analytical nodes for the Dirichlet case and to present new exact analytical modes and
frequencies with their nodal patterns for the Neumann case, and to identify their sequential
mode numbers within the overall spectrum. These should be of use as calibrations in
further investigations.

Some comments on polygonal plates are made in the Appendix.

2. ANALYTICAL MODES: FIXED (DIRICHLET) BOUNDARY CONDITION

General analytical solution for these shapes is not possible, so the modal frequencies
and corresponding modal functions are not generally known [13]. However, techniques for
writing down some explicit analytical functions and exact frequencies for certain modes
of these types of compound shapes with fixed edges (Dirichlet boundary condition) were
pursued some time ago by one of the authors, in reference [17].

A grid may be constructed consisting of squares of side length h (with origin at the corner
of a square), and straight lines with slopes 245° through the origin and other diagonal
lines parallel to these separated (horizontally and vertically) by distances in multiples of
2h. Part of such a grid is shown in Figure 1. Then, for any polygonal shape with edges
restricted to lying on this grid, the following functions are solutions of equation (1) and
satisfy the Dirichlet boundary condition (4) on the boundary lines:

um,n (x, y)= sin (mpx/h) sin (npy/h)− sin (npx/h) sin (mpy/h), (8)

with mQ n being positive integers. That the boundary condition is satisfied on any line
of the grid may be proved by noting, as in reference [17], that the expression on the right
side of formula (8) can also be rewritten as

sin [(m− n)p(x− y)/(2h)] sin [(m+ n)p(x+ y)/(2h)]

−sin [(m+ n)p(x− y)/(2h)] sin [(m− n)p(x+ y)/(2h)]. (9)

Figure 1. The two isospectral shapes superimposed on the grid with co-ordinate system (x-axis horizontal;
y-axis vertical).
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Equations (8) were also written down in reference [14] for the elemental sub-triangle,
but it is important to note here that they actually refer to the whole shapes. That is,
functions (8) constitute a set of shared mode functions for any shapes drawn on the grid,
and hence in particular for both entire isospectral shapes, and are an analytical sub-set
of all the modal functions.

The dimensionless squared frequency parameter is given for these modes exactly by

F2 0 (h2/p2)k2 =m2 + n2 (10)

for this sub-sequence of the full spectrum. For given m and n, the nodal curves may be
obtained mathematically from equations (8) after manipulations using appropriate
trigonometrical identities.

The lowest member of the set (8), with m=1, n=2 (F2 =5), was given explicitly in
reference [17] (cf. also reference [14]):

u1,2 =4 sin (px/h) sin (py/h) sin [p(x− y)/(2h)] sin [p(x+ y)/(2h)]. (11)

With reference to the two isospectral shapes under consideration, its nodal lines are the
internal straight lines dividing the shapes into the seven elementary triangular constituents.
Some numerical computations have also been performed (see section 4), and this has been
identified from the computed modal patterns as the 9th mode for both shapes, in agreement
with reference [14]. The second member in this analytical subsequence has m=1, n=3
(F3 =10, i.e., exactly twice that of equation (11)), and the explicit mode function for either
shape is given by

u1,3 =4 sin (px/h) sin (py/h) sin [p(x− y)/h] sin [p(x+ y)/h]. (12)

The nodal pattern consists of 14 smaller congruent sub-triangular regions (i.e., the seven
triangles mentioned above, halved). It was identified as the 21st mode, again in agreement
with reference [14].

The next analytical mode corresponding to subdivisions into yet smaller triangles has
m=2, n=4 (F2 =20), with 28 congruent sub-triangles, and is given by

u2,3 =4 sin (2px/h) sin (2py/h) sin [p(x− y)/h] sin [p(x+ y)/h]. (13)

The computed modal pattern, discussed in section 4, revealed this as the 44th mode.
More interestingly, there are analytical modes, not depicted before, which are not simply

sub-divisions into smaller sub-triangles. The third analytical mode in the above sequence,
with m=2, n=3 (F2 =13), is the lowest such mode. Equation (8) becomes (cf. section
6 in reference [17]):

u2,3 = u1,2[1+4 cos (px/h) cos (py/h)]. (14)

As well as the nodal straight lines like the lowest analytical case m=1, n=2 (equation
(11)), there are in this case also internal nodal curves corresponding to the bracketed
expression in equation (14): these take the form of squared-off circles. There are 14 regions
in these nodal patterns, but now seven are the quarter squared-off circles and seven are
their complements from the elemental triangles, describable perhaps as ‘‘circus-tent’’
shapes (cf. also Barton [18, p. 273, Table IX]). Our computed mode function patterns
identified this as the 27th mode.

One more such mode will be given here: for m=1, n=4 (F2 =17), it may be written
as

u1,4 =2u1,2{5−6[S2
+ +S2

−]+8S2
+S2

−}, (15a)
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T 1

Features of the first five analytical
modes, equations (11–15), for Dirich-
let boundary condition (4).
R= number of fundamental regions.

N= sequential mode number

m n F2 R N

1 2 5 7 9
1 3 10 14 21
2 3 13 14 27
1 4 17 14 38
2 4 20 28 44

where

S2
+,− = sin2 [p(x2 y)/(2h)]. (15b)

The nodal pattern consists of the seven elemental triangles together with ovals or half-ovals
lying across their diagonals, again giving 14 regions. This distinctive pattern enabled it to
be identified from the computed modal patterns as the 38th mode.

Table 1 summarizes the features of these first five ‘‘analytical’’ modes. The nodal
patterns for these modes, as obtained from the analytical expressions (11–15) above, are
drawn for both shapes in Figure 2. Note that the boundaries of the shapes are also nodal
lines, and, because of the form of equation (8), the extensions of any sides into the region
must necessarily be nodal lines, in this case the seven elemental triangles. Whilst equations
(11–15) are of course merely alternative forms of equation (8) obtained by using
trigonometrical identities such as product and compound angle formulae, their forms
exhibit the nodal lines and curves much more clearly.

3. ANALYTICAL MODES: FREE (NEUMANN) BOUNDARY CONDITIONS

For the case of free edges, with Neumann boundary condition

dv/dn=0, (16)

the appropriate modal functions are found to be

vm,n =cos (mpx/h) cos (npy/h)+ cos (npx/h) cos (mpy/h), (17)

with mE n, with m, n=0, 1, 2, . . . (except m= n=0 which corresponds to a simple
translation). Equation (1) is satisfied, again with eigenvalue given by equation (10).

The boundary condition (16) is satisfied on any line of the grid mentioned at the
beginning of section 2. Clearly 1v/1x=0 on x=Mh and 1v/1y=0 on y=Nh, where M
and N are any integers. To demonstrate how the normal derivative is also zero on a
diagonal line of the grid, it may be shown after some manipulation that

1v/1x+ 1v/1y=−(p/h){(m+ n) sin [(m+ n)(x+ y)p/(2h)] cos [(m− n)(x− y)p/(2h)]

+(m− n) sin [(m− n)(x+ y)p/(2h)] cos [(m+ n)(x− y)p/(2h)]}. (18)

If L is any integer, this clearly vanishes on the grid lines x+ y=2Lh, for which straight
lines, the left side of equation (18) is the derivative in the direction perpendicular to these
lines. Likewise, a similar expression is obtained for 1v/1x− 1v/1y, for which in the right
side of equation (18) the relative + and − signs are interchanged within all the bracketed
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Figure 2. The nodal patterns for the first five analytical Dirichlet (fixed edge) modes given by equations
(11–15). The overall sequential mode number is given. See also Table 1.
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terms containing m and n, and containing x and y. If J is any integer, this vanishes on
the grid lines x− y=2Jh, to which this is the normal derivative for those lines.

Because zero integers are allowed, the characteristic frequencies are closer together than
for the preceding Dirichlet case. Again the first five of these exact modes will be described
now for this Neumann case, after rearrangements to simplify the analytical expressions.

For m=0, n=1 (F2 =1),

v0,1 =2 cos [p(x+ y)/(2h) cos [p(x− y)/(2h)]. (19)

The nodal curves are all along some diagonal grid lines in this case. They are shown in
Figure 3 (together with the next four analytical modes) for both of the isospectral shapes.
Of course, now the edges of the shapes are not nodal lines, since they are in fact free. There
are six regions for these patterns.

For m=1, n=1 (F2 =2),

v1,1 =2 cos (px/h) cos (py/h). (20)

The nodal lines are parallel to the x and y axes, and there are nine regions, as shown in
Figure 3.

For m=0, n=2 (F2 =4),

v0,2 =2 cos [p(x+ y)/h] cos [p(x− y)/h]. (21)

The nodal lines are in the diagonal directions, and there are 14 regions (see Figure 3).
The next mode with purely straight nodal lines, in this case horizontal and vertical, is

the fifth in the analytical set, and has m=2, n=2 (F2 =8), with

v2,2 =2 cos (2px/h) cos (2py/h). (22)

It has 24 regions.
Of particular interest is the first analytical mode of the Neumann set which does not

have solely straight lines. This is the fourth in the analytical set, with m=1, n=2 (F2 =5).
Then, by some identities,

v1,2 = v0,1{2C2
+ +2C2

− −3}, (23a)

where

C2
+,− =cos2 [p(x2 y)/(2h)]. (23b)

As well as the diagonal grid lines of the first analytical mode (equation (19)), there are
also some nodal curves consisting of the curved boundaries of sectors of another kind of
squared-off circle. Their ‘‘half-axis’’ (measured along the x or y directions) can easily be
shown from equations (23) to be equal to 1/3. There are 12 regions for this mode.

Table 2 summarizes some features of these first five analytical modes for the Neumann
case, and identifies their sequential mode numbers. In Figure 3 are drawn the
corresponding nodal curves for both shapes, obtained from the manipulated expressions
(19–23). The edges of these shapes, shown by a heavier line, are not nodal lines, being free
for this boundary condition.

4. NUMERICAL COMPUTATIONS

Numerical computation of the eigenmodes enables the sequential mode number of the
analytical modes to be found with respect to the whole sequence. The fixed (Dirichlet)
modes will be dealt with first. Since accurate computational determinations of the
eigenfrequencies have already been given by others [14–16], confirming the isospectrality
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Figure 3. The nodal patterns for the first five analytical Neumann modes given by equations (19–23) (the edges
are free, not nodal lines). The overall sequential positive-frequency mode number is given. See also Table 2.
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numerically, the authors have not aimed for extreme accuracy, but rather on identification
of the modal pattern from the given nodal curves for the analytical modes. Two rules [19]
provide a useful qualitative check on the general appearance of any computed modal
functions: (1) the number of fundamental regions (connected regions bounded by nodal
curves, termed sub-domains in reference [19]) is less than or equal to the total sequential
mode number; (2) nodal curves meet in an equiangular system.

Finite element methods and Matlab were used to compute the first 50 modal frequencies
and functions for both shapes. The differences in computed k values for the two shapes
were overall less than about 0·4%, and usually less than 0·1%, confirming isospectrality
in this approximation. Our computed contour patterns agreed in appearance with those
where available in published references [13, 10] (experimental) and [14–16] (computed).

Computations were also performed using the same procedure for the completely known
analytical case of a 2×1 rectangle. These showed that (even though there were some small
errors in eigenfrequencies) the degeneracies for this case were maintained, the sequential
ordering of modes was correct, and identification of modes through contour plots was
reliable.

The analytical nodal curves depicted in Figure 2 for the two isospectral shapes are so
distinctive that they are easily identified amongst the computed modal patterns. Thus, their
sequential order number (which was always the same for both shapes) was unambiguously
assigned. The first 12 computed modes are available in reference [16], and computed modes
corresponding to the lowest two analytical modes (9th and 21st in overall sequence) appear
in reference [14]. Here, our computed modes are shown for the third and fifth analytical
modes of the first shape, identified as the 27th and 44th modes in overall mode sequence,
in Figure 4. Figure 5 shows our computed modes for both shapes for the fourth analytical
mode, identified as the 38th sequential mode from our family of computed modes. The
match with the corresponding analytical nodal curves drawn in Figure 2 is evident.

Further computations for the free (Neumann) modes enabled the sequential mode
numbers of the first five analytical modes of the shapes, whose nodal curves are depicted
in Figure 3, to be assigned. The results are summarized in Table 2.

5. CONCLUSION

Analytical modes such as those found here are characterized by their exactness and the
distinctiveness of their nodal patterns. They may therefore be used as benchmarks, against

T 2

Features of the first five analytical
modes, equations (19–23), for Neu-
mann boundary condition (16).
R= number of regions.
N= sequential mode number (ex-

cluding the zero frequency mode)

m n F2 R N

0 1 1 6 5
1 1 2 9 9
0 2 4 14 15
1 2 5 12 20
2 2 8 24 29
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Figure 4. The computed modal function contours for the 27th and 44th Dirichlet modes of the first shape.

which other computational or experimental results can be calibrated once their mode
patterns have been identified by comparisons with Figures 2 or 3. Even in experimental
situations where only the characteristic frequencies (but not the harder-to-find mode
functions) may have been measured, the sequential mode numbers should allow
identification of these key modes from Tables 1 and 2.

Four such ratios may be utilized from the results in these tables. For example, for the
Dirichlet case, the eigenvalue (or frequency-squared) ratios to the lowest analytical mode
will be compared with the exact numbers 2:2·6:3·4:4. For the Neumann case, these ratios
are 2:4:5:8. Furthermore, because of equation (10), comparisons may also be made between
Dirichlet and Neumann modes by use of both Tables 1 and 2. For instance (if the same
scale has been adhered to), the eigenvalue of the 9th Dirchlet mode should equal that of
the 20th Neumann mode (case m=1, n=2).

Finally, on the more theoretical side, it is worth noting that Smilansky [20] pointed out
that the question of uniqueness of shape corresponding to a given spectrum still remains

Figure 5. The computed modal function contours for the 38th Dirichlet mode for both shapes.
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unanswered for shapes with smooth boundaries. Shapes such as those considered above
and in references [6–11] not only have boundaries with corners but also have reflex angles.
The uniqueness question for convex connected plane domains therefore still appears to be
open.
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APPENDIX: CAN ONE HEAR THE SHAPE OF A GONG?

The characteristic frequencies and modal functions of a vibrating membrane with fixed,
rectilinear edges and a plate of the same polygonal shape with simply-supported (hinged)
edges are directly related through the membrane-plate analogy: the solutions have the same
functional form, and the frequencies of the latter are proportional to the squares of the
frequencies of the former. The plate results follow readily from the membrane problem
[21, 22]. The membrane results follow from the plate problem in this configuration because
the potentially extra frequencies from the higher (fourth) order plate equation are
imaginary [23]. The analogy is therefore complete [24].

Thus, if two simply-supported plates take the shapes of the two distinct but isospectral
polygonal fixed membranes depicted in Figure 1, that pair of plates will also be isospectral.
Therefore, in the language of reference [1], ‘‘one cannot hear the shape of a polygonal
gong’’: the frequency spectrum does not uniquely determine the shape. (For these
purposes, the ‘‘gongs’’, with their required shapes and boundary condition, have rather
more of a mathematical than a musical significance.)

We conclude by noting from the above that some isospectral membrane problems could
therefore also be investigated numerically using engineering computer packages which
handle plate vibrations.


